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Lung Cancer Canada 
Give A Breath Research Award Committee 
 
Subject: Letter of Intent for the Give A Breath Research Award 

Dear Members of the Give A Breath Research Award Committee, 

I am writing to express my intent to apply for the Give A Breath Research Award in support 

of my research project, “AI-Enhanced Liquid Biopsy for Monitoring Treatment Resistance 

in Advanced Lung Cancer.” This research aligns with the award’s mission to address 

urgent needs in advanced lung cancer, particularly in patients who progress beyond first-

line therapy. By advancing non-invasive monitoring strategies, our work seeks to improve 

diagnostic precision, predict treatment resistance, and optimize patient outcomes for 

Canadians living with stage III or IV lung cancer. 

Our project proposes the development and validation of an artificial intelligence (AI)-

powered liquid biopsy platform that integrates circulating tumor DNA (ctDNA) and 

proteomic biomarkers. By focusing on clinically relevant mutations (EGFR, KRAS, ALK, 

TP53) alongside proteomic signatures, we will generate a compact biomarker panel that 

can accurately identify resistance and disease progression. Building on our recent 

publication in iScience (2023), which demonstrated the power of deep learning to improve 

biomarker discovery, this proof-of-concept project will leverage public datasets and 

collaborative expertise to deliver actionable insights that can be readily applied in clinical 

oncology practice. 

This research is a collaborative effort with Dr. Rosalyn Juergens, thoracic oncologist and 

expert in liquid biopsy applications in lung cancer, and Dr. Zhiyong Zhang of Stanford 

University for AI in Healthcare, a leader in scalable deep learning and biomarker 

integration. Their combined expertise in clinical oncology and AI-driven healthcare 

innovation will be essential to ensuring both feasibility and clinical relevance. 

By targeting the critical gap in post-first-line therapy management, this project will drive a 

transformative shift in how we monitor advanced lung cancer, ultimately reducing 

unnecessary biopsies, guiding treatment selection, and improving survival and quality of 

life for patients. 

I sincerely appreciate your consideration of this application and look forward to 

contributing to the advancement of lung cancer research and patient care. Please do not 

hesitate to contact me if you require further information. 

Sincerely, 

 

Fei Geng 
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Background and Rationale 
Advanced lung cancer (stage III/IV) patients who progress after first-line therapy face 
limited treatment options and poor outcomes1. Monitoring depends largely on invasive 
tissue biopsies, which are impractical to repeat. Liquid biopsy offers a non-invasive 
alternative, but its reliability is limited by low ctDNA abundance and biological variability2. 
Artificial intelligence (AI) provides an opportunity to overcome these barriers by detecting 
complex biomarker patterns that predict resistance and progression3–5. Our team has 
pioneered this approach. In 2023, the Geng Research Group published in iScience a 
deep learning feature-extraction framework that improved biomarker discovery and 
classification accuracy compared with conventional methods3. This work demonstrated 
robust class separation and interpretable biomarker identification. Building on this 
foundation, we propose to integrate ctDNA mutation profiles, protein biomarkers, and 
clinical metadata to develop an AI-powered tool for detecting resistance and progression 
in advanced lung cancer.  

Hypothesis and Objectives 
We hypothesize that an AI framework (Fig. 1) integrating liquid biopsy multi-omics will 
identify predictive signatures of therapy resistance and disease progression in advanced 
lung cancer patients beyond first-line therapy. Our objectives are: (1) to develop and 
validate a multi-input deep learning model incorporating ctDNA, protein biomarkers, and 
clinical metadata; (2) to demonstrate that the model improves classification of progression 
versus response compared with current monitoring approaches; (3) to evaluate predictive 
biomarkers for correlation with clinical outcomes such as progression-free survival. 

 
 
Feasibility Statement 
This project is designed to be feasible within the funding limit by leveraging publicly 
accessible, well-curated datasets rather than initiating a costly prospective collection. By 
narrowing ctDNA analysis to the most clinically relevant mutations (EGFR, KRAS, ALK, 
TP53) and integrating these with available proteomic and clinical data, we ensure that the 
scope is realistic and achievable. Existing institutional resources and expertise in AI 
modeling and biomarker analysis further support feasibility. The proposed work is 
therefore appropriately scaled for a one-year, proof-of-concept study and will provide 
critical preliminary data to enable larger, externally funded trials. 

Team and Roles 
This project will be conducted by a multidisciplinary team with expertise spanning 
oncology, artificial intelligence, and biomarker research. 
Dr. Fei Geng, PhD (Principal Investigator): Associate Professor in Faculty of 
Engineering at McMaster University. Dr. Geng has extensive experience in cancer 
diagnostics6, biomarker discovery7, and AI applications3,8 for lung cancer. He will oversee 
project design, AI framework development, and integration of ctDNA/proteomic data. 

Figure 1. AI-enhanced liquid biopsy for 

advanced lung cancer. Liquid biopsy samples of 

ctDNA and proteins are analyzed by an AI model to 

stratify risk and distinguish stable disease from 

progression, enabling oncologists to optimize 

treatment decisions. This approach supports 

earlier intervention, improved survival, and better 

quality of life for patients. 
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Dr. Rosalyn Juergens, MD, PhD (Clinical Oncology Lead): Thoracic oncologist at 
Hamilton Health Sciences and Professor of Oncology at McMaster University. Dr. 
Juergens will guide clinical relevance9,10, ensuring that the biomarker and AI findings are 
aligned with patient needs and treatment decision-making. She will provide access to 
clinical expertise and validation opportunities in lung cancer management. 
Dr. Zhiyong Zhang, PhD (AI and Computing Lead): Senior Scientist in AI based 
Healthcare at Stanford University. Dr. Zhang brings expertise in scalable deep learning 
architectures, GPU-accelerated computing, and integration of large-scale biomarker 
datasets11,12. He will advise on computational efficiency and optimization of the multi-
modal AI framework, ensuring that the platform can be scaled to larger cohorts in future 
studies. 

Methodology  
1. Study Design: This is a translational research project combining AI model 
development with publicly accessible, well-curated clinical and biomarker datasets. 
Instead of initiating a costly prospective collection, we will use recommended publicly 
available datasets that include ctDNA mutation data, proteomic panels, and associated 
clinical outcomes in advanced NSCLC patients.  
2. Focused Proof-of-Concept Scope: To ensure feasibility, ctDNA profiling will be 
restricted to the most clinically relevant mutations (e.g. EGFR, KRAS, ALK, and TP53). 
These are frequently altered in NSCLC and directly inform clinical decision-making. This 
narrower scope is cost-effective while remaining sufficient to demonstrate proof-of-
principle. Positive results from this targeted analysis will justify expansion to broader 
panels and prospective cohorts in future, larger-scale studies. 
3. Biomarker Analysis: Public datasets will provide ctDNA profiles for key driver 
mutations and proteomic measurements for circulating biomarkers. Where available, 
additional clinical metadata (e.g. demographics, prior treatments, outcomes) will be 
included. This will ensure robust integration and correlation with disease progression. 
4. AI Integration: Building upon our 2023 iScience methodology, we will adapt the 
feature-extraction framework to multi-modal inputs, training the AI to combine ctDNA and 
proteomic patterns to predict progression. Validation will use cross-validation on public 
datasets, with interpretability achieved to identify the most predictive biomarkers. This 
compact biomarker set will form the foundation of a clinically implementable assay.  

Timeline and Stages 
The proposed research will be completed within the one-year duration of the award, 
divided into three stages: Stage 1 (Months 1–4): Dataset acquisition, ethics confirmation 
for secondary use, and preprocessing pipeline adaptation. Stage 2 (Months 5–8): Initial 
AI model training using ctDNA and proteomic data focused on EGFR, KRAS, ALK, and 
TP53. Stage 3 (Months 9–12): Algorithm refinement with incorporation of clinical 
metadata and feature attribution analysis.  

Expected Outcomes 
This project will produce proof-of-concept validation of an AI-enhanced liquid biopsy 
platform for advanced lung cancer. Expected outcomes include a compact biomarker 
panel of ctDNA and proteins with predictive utility, reduced reliance on repeat biopsies, 
earlier detection of progression, and improved clinical decision-making beyond first-line 
therapy. Ultimately, this tool could enable oncologists to intervene earlier, select more 
effective second-line treatments, and improve survival and quality of life for Canadian 
patients. 
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This project is positioned to exert a sustained and powerful influence on both lung cancer 
research and clinical practice. Advanced and metastatic lung cancer remains the leading 
cause of cancer-related mortality in Canada, with more than 28,000 new cases annually 
and five-year survival rates below 20%. The majority of patients with non–small cell lung 
cancer (NSCLC) ultimately progress after first-line therapy—whether chemotherapy, 
immunotherapy, or targeted therapy—and face poor outcomes. In routine practice, 
disease monitoring is heavily reliant on serial imaging and, when feasible, tissue biopsies. 
These approaches are invasive, expensive, and often inadequate for capturing dynamic 
tumor evolution such as emerging resistance mutations or molecular heterogeneity. Our 
project directly addresses these gaps by developing an AI-powered liquid biopsy 
platform capable of integrating ctDNA and proteomic biomarkers to provide a non-
invasive, reliable method for monitoring disease progression and treatment resistance. 

The immediate benefit of this research will be to improve patient quality of life and 
clinical decision-making. Patients will be spared from repeated tissue biopsies, 
reducing procedural pain, pneumothorax risk, and delays in care. By identifying 
resistance earlier, such as detection of EGFR T790M, KRAS G12C, or ALK fusion 
alterations, oncologists will be able to act sooner, discontinuing ineffective therapies, 
minimizing unnecessary toxicity, and transitioning patients to approved second-line 
treatments (e.g., osimertinib for EGFR T790M, sotorasib for KRAS G12C, lorlatinib for 
ALK). This proactive approach will allow earlier therapeutic intervention, directly 
improving treatment efficacy and extending survival. Families and patients will also 
benefit from clearer guidance, fewer care disruptions, and greater confidence in treatment 
planning.  

In the short- to medium-term, the project will promote a major advancement in lung cancer 
research by accelerating the translation of biomarker findings into actionable clinical 
outcomes. By focusing on a compact and clinically relevant panel of ctDNA mutations 
(EGFR, KRAS, ALK, TP53) alongside proteomic markers of disease burden and systemic 
inflammation, the study will generate data that can be directly applied in Canadian 
oncology clinics. This approach supports practical adoption by aligning with existing 
treatment algorithms, response assessments, and the need for rapid turnaround in 
clinical decision-making. These advances will optimize patient care pathways, improve 
treatment stratification, reduce unnecessary toxicity, and support the personalization of 
therapy for patients with advanced lung cancer.  

The long-term implications are equally significant. Demonstrating feasibility in this pilot 
phase will catalyze larger multi-centre trials, positioning Canada at the forefront of 
precision oncology. Ultimately, national implementation of AI-enhanced liquid biopsy 
platforms could reduce mortality by enabling earlier interventions and lowering the 
incidence of advanced presentations through improved monitoring and proactive 
treatment adjustment. This initiative will set new standards for patient-centered care, 
ensuring that knowledge gained from cutting-edge science is translated rapidly into 
outcomes that matter most: optimized patient care, improved survival, enhanced quality 
of life, and reduced burden of lung cancer in Canada. 
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Lung cancer is the leading cause of cancer-related death in Canada, with more people 
dying from lung cancer each year than breast, prostate, and colorectal cancers combined. 
Unfortunately, most patients with advanced lung cancer eventually see their disease 
return or worsen after their first round of treatment. When this happens, doctors face 
difficult decisions about when to change therapies and which treatments are likely to work 
best. Today, these decisions often rely on repeat tissue biopsies and frequent scans. 
Tissue biopsies can be painful, carry medical risks, and are not always possible. Scans, 
while helpful, do not always show the full picture of how a cancer is changing at the 
molecular level. This leaves patients and families living with uncertainty and sometimes 
results in delays in receiving the right treatment. 

This project aims to change that by using a simple blood test—often called “liquid 
biopsy”—combined with artificial intelligence (AI) to monitor lung cancer more effectively. 
A liquid biopsy looks for tiny pieces of DNA and proteins from the tumor that are circulating 
in a patient’s blood. By analyzing these markers, doctors will learn important information 
about whether cancer is responding to treatment or developing resistance. However, 
because these signals are often very small and complex, they can be hard to interpret 
using traditional methods. 

Our research group has developed advanced AI technology that can find patterns in this 
type of data that would otherwise go unnoticed. By training the AI system to recognize 
key genetic changes (such as those in EGFR, KRAS, ALK, and TP53), along with protein 
markers in the blood, we can create a more accurate and reliable test. This test will give 
oncologists timely information about whether a patient’s treatment is still working or needs 
to be changed. 

The potential benefits for patients are significant. With this approach, patients may avoid 
repeated invasive biopsies, reducing pain, anxiety, and medical risk. They may also spend 
less time waiting for answers, since a blood test can be performed more quickly than a 
biopsy. Most importantly, earlier detection of treatment resistance could allow doctors to 
switch therapies sooner, improving survival and maintaining quality of life. Families will 
benefit from clearer guidance and fewer disruptions in care. 

Although this is a pilot project, it has the potential to make a lasting impact. By showing 
that AI can improve how liquid biopsy tests are interpreted, this study will lay the 
foundation for larger trials in Canada and eventually new standards of care. If successful, 
this work will help ensure that patients with advanced lung cancer receive the right 
treatment at the right time, with less burden and greater peace of mind. 

This project is supported by a team of experts in oncology and artificial intelligence, 
including Dr. Fei Geng, recipient of 2023 Lung Ambition Award, thoracic oncologist Dr. 
Rosalyn Juergens, and AI scientist Dr. Zhiyong Zhang from Stanford University. Together, 
they are working to deliver new tools that put patients and families at the center of lung 
cancer care. 
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      FROM:  TO: 

DETAILED BUDGET      12/1/2025   11/30/2026 

PERSONNEL   

 
SALARY REQUESTED  

NAME 
ROLE ON 
PROJECT Year   1 TOTALS 

 Dr. Fei Geng  PI   $ 0                  -     $ 0                -    

 Dr. Rosalyn Juergens Co-PI  $ 0                  -     $ 0                -    

 Dr. Zhiyong Zhang Co-PI  $ 0                 -     $ 0                - 

Wenlong Wang M.A.Sc. Student  

   
                         
$12,500               $12,500 

PERSONNEL TOTAL  
                              
$12,500                  $12,500 

DATA ACCESS AND BIOMARKER 
ANALYSIS                                                                         
Funds are allocated for data access 
agreements or cost-recovery fees where 
required for controlled-access biobank 
datasets, while maximizing the use of freely 
available public resources. 

  

 

          $5,000  

FACILITY USAGE                                        
GPU-accelerated cloud computing resources 
will be required for deep learning model 
training, validation, and interpretability 
analyses. Secure storage for clinical and 
biomarker data is also included.                                                                                                                

        $5,000  

KNOWLEDGE TRANSLATION AND 
DISSEMINATION 
This will support preparation of manuscripts 
for submission to clinical oncology journals, 
conference abstract fees (e.g., WCLC 2026), 
and to be shared with Lung Cancer Canada 
and the patient community. 

 
 
 
 
 
 

$2,500 

 TOTAL COSTS   $25,000  
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This pilot project has been carefully scoped to fit within the $25,000 budget while ensuring 

feasibility and high impact. The funds will be allocated as follows: 

1. Personnel – $12,500 

Wenlong Wang (M.A.Sc. student) will be supported to carry out data preprocessing, AI framework 

adaptation, and statistical analyses. Personnel costs represent the largest portion of the budget 

because specialized computational and analytic expertise is critical to the project’s success. 

Investigators (Drs. Geng, Juergens, and Zhang) will contribute their time in-kind without 

requesting salary support. 

2. Data Access and Biomarker Analysis – $5,000 

Funds are allocated for data access agreements or cost-recovery fees where required for 

controlled-access biobank datasets, while maximizing the use of freely available public resources 

(e.g., TCGA, cBioPortal, ICGC). This line also covers limited targeted biomarker validation (such 

as ctDNA profiling for EGFR, KRAS, ALK, TP53 using digital PCR assays if required). These 

allocations ensure that the project remains feasible within the funding envelope. 

3. Facility Usage (Computational Infrastructure) – $5,000 

GPU-accelerated cloud computing resources are necessary for deep learning model training, 

validation, and interpretability analyses. Secure storage for clinical and biomarker data is included. 

Institutional infrastructure and in-kind computational resources will be leveraged to maximize 

efficiency. 

4. Knowledge Translation and Dissemination – $2,500 

This budget item supports the preparation of manuscripts for submission to peer-reviewed 

oncology journals, abstract submissions to national and international conferences (e.g., WCLC 

2026), and lay summaries to be shared with Lung Cancer Canada and the patient community. 

Total: $25,000 CAD 

This budget emphasizes cost efficiency by leveraging open-access datasets, institutional 

infrastructure, and in-kind contributions from investigators. It is realistic, feasible, and aligned with 

the goals of the Give A Breath Research Award—to support a high-impact, proof-of-concept study 

that accelerates the translation of scientific discoveries into optimized patient care and improved 

outcomes. 

 



 

 

 

Gilmour Hall, Room 305 

1280 Main Street West 

Hamilton, ON, Canada, L8S 4L8 

(905) 525-9140 

https://roads.mcmaster.ca/ 

 
 

 

September 30, 2025 

 

Dear Lung Cancer Canada:  

 

McMaster enthusiastically supports the proposed research project by Dr. Fei Geng, associate 

professor at McMaster University. The project, titled “AI-Enhanced Liquid Biopsy for 

Monitoring Treatment Resistance in Advanced Lung Cancer” and submitted for consideration 

within the Give a Breath Research Award competition, is a compelling and innovative endeavor 

that aligns seamlessly with our institution's research objectives and goals.  

 

Having thoroughly reviewed the details of the proposed research, we are confident in its 

feasibility within our institution. Our institution possesses the necessary infrastructure, resources, 

and expertise to facilitate the successful execution of this project. Furthermore, we acknowledge 

Dr. Fei Geng's expertise and dedication to their work. Their proven track record and commitment 

to excellence make us confident in their ability to carry out this research successfully. We 

anticipate that the outcomes of this research will not only enhance the academic reputation of our 

institution but also contribute meaningfully to the broader scientific community.  

 

McMaster University intends to provide support for this project in the areas of grant fund 

administration, data management consultations, and institutional administrative support. We look 

forward to the positive impact Dr. Fei Geng’s research will have on our institution and the 

broader academic community.  

 

Sincerely,  

Sherrise Webb  

 

 
 

 

Director, Research Office for Administration, Development and Support 

https://roads.mcmaster.ca/
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Appendix: Supporting Manuscript 

This Appendix provides an unpublished manuscript describing our development of a 

Discriminative Center-Loss Deep Learning framework for liquid biopsy–based lung 

cancer detection, offering preliminary evidence and methodological detail that support the 

feasibility and innovation of the proposed project. 
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ABSTRACT 

Liquid biopsy offers a non-invasive approach for early cancer detection by analyzing 

circulating tumor DNA (ctDNA) and cell-free DNA (cfDNA) in blood samples. However, 

the complexity and imbalance of clinical datasets challenge conventional models. Here, 

we implemented a Discriminative Center-Loss Deep Learning (DCLDL) framework to 

enhance classification performance in lung cancer detection from plasma-derived 

biomarkers. Using a curated dataset of 916 patients (812 healthy, 104 lung cancer), our 

model achieved 97% accuracy with an AUC of 0.994, outperforming a standard multilayer 

perceptron (MLP). Visualization of embedding spaces demonstrated improved intra-class 

compactness and inter-class separation, highlighting the interpretability advantages of 

DCLDL. These results underscore the promise of advanced AI frameworks in non-

invasive diagnostics and pave the way for clinically relevant workflows in liquid biopsy. 

 

mailto:gengf@mcmaster.ca


Page 2 of 9 
 

INTRODUCTION 

Lung cancer remains the leading cause of cancer-related mortality worldwide, with 

survival outcomes largely determined by the stage at which the disease is diagnosed. 

Early detection is critical, as patients diagnosed at localized stages experience markedly 

improved prognosis compared with those identified after disease progression. 

Conventional diagnostic approaches rely heavily on tissue biopsies and imaging 

modalities, which are invasive, costly, and often limited in their ability to capture tumor 

heterogeneity or detect disease at its earliest stages. 

Liquid biopsy has emerged as a promising alternative, enabling minimally invasive 

detection and monitoring of circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), and 

other blood-based biomarkers. Despite its potential, clinical adoption of liquid biopsy for 

lung cancer detection has been hindered by key challenges. These include the inherently 

high dimensionality and heterogeneity of biomarker datasets, low abundance of ctDNA in 

early-stage disease, and imbalances in patient cohorts that bias model performance. 

Traditional statistical and machine learning approaches have struggled to overcome 

these barriers, frequently resulting in suboptimal classification accuracy, poor 

reproducibility, and limited interpretability. 

Recent advances in artificial intelligence (AI) offer new opportunities to address these 

limitations by extracting complex, high-order patterns from multi-omic data. In particular, 

deep learning models are well suited to capture nonlinear relationships among diverse 

biomarker inputs. However, conventional deep learning frameworks may still fail to 

achieve robust class separation when applied to imbalanced or noisy clinical datasets. To 

overcome these issues, we developed a Discriminative Center-Loss Deep Learning 

(DCLDL) framework that integrates a center-loss objective into neural network training. 

This approach enforces compact intra-class clustering and clear inter-class separability, 

thereby enhancing both predictive accuracy and interpretability. 

Here, we applied the DCLDL framework to a curated liquid biopsy dataset for lung cancer 

detection. We demonstrate that this method achieves superior performance compared 

with standard multilayer perceptron models, attaining high accuracy and near-perfect 

area under the curve (AUC) values while producing interpretable feature embeddings. 

These findings highlight the promise of DCLDL as an AI-powered diagnostic tool and 

provide proof-of-concept evidence for its clinical potential in non-invasive early detection 

of lung cancer. 

METHODS 

Dataset and Preprocessing 

Patient data were obtained from the publicly available liquid biopsy study by Cohen et al. 

(2018), which includes blood-derived molecular profiles used for cancer detection. For 
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the present study, we focused specifically on lung cancer classification. The dataset 

comprised 916 samples, including 812 healthy controls and 104 patients diagnosed with 

lung cancer. Each sample contained multiple feature categories: plasma DNA 

concentration, mutation allele frequencies of circulating tumor DNA (ctDNA), over forty 

circulating protein biomarkers, and basic demographic variables such as age and sex. 

To ensure data quality and consistency, preprocessing was conducted in several stages. 

First, categorical demographic features were encoded using one-hot encoding. 

Continuous features were standardized to zero mean and unit variance to prevent scale 

differences from biasing model training. Missing data points, which are common in clinical 

datasets, were addressed using k-nearest neighbors (KNN) imputation with k=5, allowing 

robust estimation of missing values based on the most similar samples. Following 

preprocessing, the dataset was randomly partitioned into training (70%), validation (15%), 

and test (15%) subsets, with stratification to maintain proportional representation of 

cancer and healthy cases across all splits. 

Model Architecture and Training 

We implemented a fully connected neural network augmented with a center-loss 

component, hereafter referred to as the Discriminative Center-Loss Deep Learning 

(DCLDL) model. The network architecture consisted of three hidden layers with rectified 

linear unit (ReLU) activations, batch normalization, and dropout regularization (p = 0.5) to 

reduce overfitting. The center-loss objective was integrated into the final feature 

embedding layer. This term penalizes the Euclidean distance between sample 

embeddings and their corresponding class centers, thereby enforcing tighter intra-class 

clustering and improved inter-class separation. 

The final loss function was a weighted combination of cross-entropy loss and center loss: 

 

where Lsoftmax is the standard cross-entropy loss,  Lcenter is the center-loss term, and λ is 

a hyperparameter controlling their relative contributions.  

Training was performed using the Adam optimizer for network weights (learning rate = 

0.001) and stochastic gradient descent (SGD) for updating class centers (learning rate = 

0.5). Early stopping was applied with a patience of 20 epochs based on validation loss to 

prevent overfitting. Training and evaluation were conducted using PyTorch 2.0 on an 

NVIDIA GPU workstation. 

Baseline Model for Comparison 

To establish a benchmark, we trained a multilayer perceptron (MLP) using the same 

architecture and hyperparameters but without the center-loss component. This baseline 
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relied solely on cross-entropy loss for classification, enabling direct comparison of the 

effects of incorporating center loss. Both models were trained under identical 

preprocessing and data splits to ensure fairness of comparison. 

Evaluation Metrics 

Model performance was evaluated on the independent test set using accuracy, precision, 

recall, and F1-score for both cancer and healthy classes. Additionally, we computed the 

area under the receiver operating characteristic curve (AUC) to quantify overall 

discriminative performance. To better understand model robustness, we also examined 

confusion matrices and compared embedding spaces visualized using t-distributed 

stochastic neighbor embedding (t-SNE). Visualization was performed on the learned 

feature embeddings from the penultimate network layer, allowing assessment of intra-

class compactness and inter-class separation. 

Reproducibility and Validation 

To ensure reproducibility, all experiments were repeated five times with different random 

seeds, and results are reported as the mean across runs. Hyperparameters, including the 

weighting factor λ\lambdaλ, were tuned through grid search on the validation set. The 

final model configuration was selected based on the best balance of accuracy and AUC. 

RESULTS 

Training Dynamics and Model Convergence 

The DCLDL model demonstrated stable convergence throughout the training and 

validation phases. As shown in Figure 1, both training and validation losses decreased 

steadily during the early epochs and plateaued at low values, indicating that the model 

avoided overfitting. Validation accuracy stabilized near 98–99% after approximately fifty 

epochs, confirming strong generalization to unseen data. The confusion matrix in Figure 

1 further illustrates the classification performance, showing that the model correctly 

identified the vast majority of both healthy and cancer samples, with only a small number 

of cancer cases misclassified as healthy. This misclassification pattern likely reflects the 

underlying dataset imbalance, where the smaller cancer cohort constrained the model’s 

ability to capture all disease-specific features. 

Classification Performance 

On the independent test set, the DCLDL framework achieved an overall accuracy of 97 

percent, which represented an improvement over the baseline MLP model that achieved 

94 percent. The receiver operating characteristic (ROC) analysis yielded an area under 

the curve (AUC) of 0.994, as illustrated in Figure 3, demonstrating near-perfect 

discriminative capacity. The model exhibited strong sensitivity and specificity. For cancer 

detection, the model attained a precision of 0.93 and a recall of 0.81, showing that most 
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true cancer cases were identified correctly, while false positives were minimized. For 

healthy classification, the model achieved a precision of 0.98 and a recall of 0.99, 

reflecting exceptional reliability in distinguishing non-cancer samples. Although recall for 

the cancer class was slightly lower, this trade-off is consistent with the 

underrepresentation of cancer cases in the dataset. Notably, the high precision of the 

cancer predictions indicates that when the model classified a patient as cancer, the 

prediction was rarely incorrect, a clinically relevant property for diagnostic applications. 

Comparative Analysis with MLP Baseline 

Direct comparison with the baseline MLP highlights the advantages of the DCLDL 

approach. While the MLP achieved good performance with an AUC of 0.978 and an 

accuracy of 94 percent, it displayed greater variability in the classification of cancer cases 

and produced more false negatives. The embedding spaces produced by the two models 

further emphasize these differences. The t-SNE embeddings of the DCLDL model (Figure 

2) show tight, well-separated clusters for healthy and cancer cases, while the MLP 

embeddings (Figure 4) appear dispersed with overlapping distributions. This 

demonstrates that the inclusion of the center-loss objective strengthened intra-class 

compactness and improved inter-class separability, yielding more robust and 

interpretable feature representations. 

Feature Space Visualization and Interpretability 

The two-dimensional visualization of the learned feature space underscores the 

interpretability benefits of the DCLDL framework. In Figure 2, cancer cases are clearly 

separated from the dense clusters of healthy cases, forming a distinct and interpretable 

pattern that aligns with biological expectations of disease-associated molecular 

signatures. In contrast, the MLP model (Figure 4) failed to achieve this separation, with 

substantial overlap between cancer and healthy samples. These visualizations provide 

an intuitive validation of the discriminative power of DCLDL, offering a transparent 

representation of the model’s decision boundaries. 

ROC Curve Analysis 

The ROC curve for the DCLDL model, shown in Figure 3, provides further evidence of its 

discriminative capacity. The steep ascent of the curve and the near-maximal AUC value 

of 0.994 reflect strong sensitivity across a wide range of classification thresholds. 

Importantly, even at high-specificity thresholds, where false positives are minimized, the 

model maintained high sensitivity in detecting cancer cases. This balance between 

sensitivity and specificity underscores the clinical relevance of the approach, particularly 

in the context of screening applications where minimizing false positives while maintaining 

high cancer detection rates is essential. 
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DISCUSSION 

The present study demonstrates that a Discriminative Center-Loss Deep Learning 

(DCLDL) framework can substantially improve classification performance in liquid 

biopsy–based lung cancer detection compared to a conventional multilayer perceptron. 

By integrating a center-loss objective, the DCLDL approach enforced intra-class 

compactness and inter-class separability, which translated into clearer feature clustering, 

higher predictive accuracy, and superior robustness. The combination of quantitative 

metrics and qualitative visualization provides convergent evidence that this framework is 

well suited for clinical applications in early cancer detection. 

A key strength of the DCLDL model lies in its ability to mitigate challenges inherent to 

liquid biopsy datasets, including high dimensionality, noise, and class imbalance. While 

conventional models often achieve high training accuracy but generalize poorly to unseen 

data, the DCLDL model not only maintained strong performance on the validation and 

test sets but also produced well-structured feature embeddings. The t-SNE plots highlight 

that healthy and cancer cases form distinct distributions under the DCLDL model, which 

was not achieved by the baseline MLP. This improvement is particularly meaningful in the 

clinical setting, where interpretability and reproducibility are essential for building trust in 

AI-driven diagnostic systems. 

The clinical implications of these findings are significant. A non-invasive, highly accurate, 

and interpretable diagnostic tool has the potential to complement or, in some cases, 

reduce reliance on invasive tissue biopsies and imaging modalities. The high precision 

observed for cancer classification suggests that the model rarely produces false cancer 

diagnoses, thereby minimizing unnecessary follow-up procedures. Although sensitivity for 

the cancer cohort was somewhat reduced due to class imbalance, the near-perfect AUC 

indicates that with better-balanced datasets, the framework could achieve even higher 

recall without compromising specificity. Such a balance is crucial in screening scenarios, 

where both false positives and false negatives carry serious clinical consequences. 

Despite these strengths, several limitations must be acknowledged. The dataset included 

only 104 lung cancer cases compared to 812 healthy controls, creating a significant 

imbalance. While the center-loss approach helped mitigate this, the limited representation 

of cancer cases likely constrained the model’s ability to capture the full heterogeneity of 

disease states. Additionally, the performance of deep learning models is sensitive to 

hyperparameter selection, and the λ weighting term in the center-loss function requires 

careful tuning to ensure reproducibility. These considerations highlight the need for 

validation across larger and more diverse cohorts that reflect real-world patient 

populations. 
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Conclusion 

The DCLDL framework represents a significant step forward in AI-powered liquid biopsy 

diagnostics. By achieving high accuracy and interpretable cluster separation, it 

demonstrates potential as a clinically viable tool for early cancer detection. Future work 

should focus on larger, balanced datasets and interpretable workflows to accelerate 

clinical translation. 
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Figures 

 

Figure 1. Training dynamics and validation performance of the DCLDL model. 
(A) Training and validation loss curves over 45 epochs, showing stable convergence and 
reduced overfitting. (B) Validation accuracy across epochs, plateauing near 99% after ~20 
epochs, indicating strong generalization. (C) Confusion matrix of the validation set, 
demonstrating near-perfect classification with only one cancer case misclassified as 
healthy (accuracy = 98.8%). 

 

Figure 2. Two-dimensional feature space visualization of DCLDL embeddings. 

t-SNE projection of the learned feature representations shows clear separability between 

healthy (blue) and cancer (orange) samples, with compact intra-class clustering and 

distinct inter-class boundaries. 

A B C 
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Figure 3. Receiver operating characteristic (ROC) curve of the DCLDL model. The 

ROC curve demonstrates excellent classification performance for distinguishing cancer 

from healthy samples, with an area under the curve (AUC) of 0.994, indicating near-

perfect discriminative capacity. 

 
Figure 4. Two-dimensional feature space visualization of MLP embeddings. 
t-SNE projection of feature representations from the baseline multilayer perceptron (MLP) 
model shows dispersed clustering with partial overlap between healthy (blue) and cancer 
(orange) samples, indicating reduced class separability compared with the DCLDL 
framework. 
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